Self Employment

How to make Chack piece Business at Home – Self Employment – Namaste Kadapa

Chalk used in school classrooms comes in slender sticks approximately .35 of an inch (nine millimeters) in diameter and 3.15 inches (80 millimeters) long. Lessons are often presented to entire classes on chalk-boards (or blackboards, as they were originally called) using sticks of chalk because this method has proven cheap and easy.

Raw Materials

The main component of chalk is calcium carbonate (CaCO 3 ), a form of limestone. Limestone deposits develop as coccoliths (minute calcareous plates created by the decomposition of plankton skeletons) accumulate, forming sedimentary layers. Plankton, a tiny marine organism, concentrates the calcium found naturally in seawater from .04 percent to 40 percent, which is then precipitated when the plankton dies.

To make chalk, limestone is first quarried, generally by an open pit quarry method. Next, the limestone must be crushed. Primary crushing, such as in a jaw crusher, breaks down large boulders; secondary crushing pulverizes smaller chunks into pebbles. The limestone is then wet-milled with water in a ball mill—a rotating steel drum with steel balls inside to further pulverize the chalk. This step washes away impurities and leaves a fine powder.

To make chalk, limestone is first quarried, generally by an open pit quarry method. Next, the limestone must be crushed. Primary crushing, such as in a jaw crusher, breaks down large boulders; secondary crushing pulverizes smaller chunks into pebbles. The limestone is then wet-milled with water in a ball mill—a rotating steel drum with steel balls inside to further pulverize the chalk. This step washes away impurities and leaves a fine powder.

The base of pastel chalks is calcium sulfate (CaSO 4 ), which is derived from gypsum (CaSO 4 -2H 2 O), an evaporite mineral formed by the deposition of ocean brine; it also occurs disseminated in limestone. Chalk and dehydrated gypsum thus have similar origins and properties. Pastels also contain clays and oils for binding, and strong pigments. This mixture produces sticks that write smoothly without smearing and draw better on paper than on chalkboards. Although great care is taken to eliminate contaminants when chalk is manufactured, some impurities inherent to the mineral remain. Chief among these are silica, alumina, iron, phosphorus, and sulfur. In less significant, amounts, manganese, copper, titanium, sodium oxide, potassium oxide, fluorine, arsenic, and strontium may also occur.

The Manufacturing Process

Quarrying limestone

  • 1 Approximately 95 percent of the limestone produced in the United States is quarried. After a sufficient reserve (twenty-five years’ worth is recommended) has been prospected, the land that covers the deposit is removed with bulldozers and scrapers. If the chalk is close to the surface, an open shelf quarry method can be used; however, this is very rare. Usually an open pit quarry method is used instead. In this method, holes are drilled into the rock, explosives are placed inside, and the rock is blown apart. Depending on the nature of the deposit, a pit can be enlarged laterally or vertically.

Pulverizing the chalk

  • 2 Once comparatively large chunks of limestone have been quarried, they need to be transported to crushing machines, where they are pulverized to meet the demands of the chalk industry. The first step is primary crushing. Various crushers exist, but the principle is the same: all compress the stone with jaws or a cone, or shatter it through impact. Secondary crushing is accomplished by smaller crushers that work at higher speeds, producing pebbles which are then ground and pulverized.
  • 3 The next phase, wet grinding, washes away impurities. It is used to make the fine grade of limestone necessary to make chalk suitable for writing purposes. Wet grinding is carried out in ball mills—rotating steel drums with steel balls inside that pulverize the chalk until it is very fine.
After grinding, the chalk particles are sifted over vibrating screens to separate the finer particles. The particles are then mixed with water, extruded through a die of the proper size, and cut to the proper length. Finally, the chalk is cured in an oven for four days.

After grinding, the chalk particles are sifted over vibrating screens to separate the finer particles. The particles are then mixed with water, extruded through a die of the proper size, and cut to the proper length. Finally, the chalk is cured in an oven for four days.

Dehydrating gypsum

  • 4 Gypsum, like limestone, is also quarried and pulverized. The major difference in processing gypsum is that it must be dehydrated to form calcium sulfate, the major component of colored chalk. This is done in a kettle, a large combustion chamber in which the gypsum is heated to between 244 and 253 degrees Fahrenheit (116-121 degrees Celsius). It is allowed to boil until it has been reduced by twelve to fifteen percent, at which point its water content will have been reduced from 20.9 percent to between 5 and 6 percent. To further reduce the water, the gypsum is reheated to about 402 degrees Fahrenheit (204 degrees Celsius), at which point it is removed from the kettle. By now, almost all of the water has evaporated, leaving calcium sulfate.

Sifting, cleaning, and shipping 
the chalk

  • 5 The particles of chalk or calcium sulfate are now conveyed to vibrating screens that sift out the finer material. The ensuing fine chalk is then washed, dried, packed in bags, and shipped to the manufacturer. Upon receiving chalk or calcium sulfate, the chalk factory usually grinds the materials again to render them smooth and uniformly fine.

Making white classroom chalk

  • 6 To make white classroom chalk, the manufacturer adds water to form a thick slurry with the consistency of clay. The slurry is then placed into and extruded from a die—an orifice of the desired long, thin shape. Cut into lengths of approximately 24.43 inches (62 centimeters), the sticks are next placed on a sheet that contains places for five such sticks. The sheet is then placed in an oven, where the chalk cures for four days at 188 degrees Fahrenheit (85 degrees Celsius). After it has cured, the sticks are cut into 80 millimeters lengths.

Making colored classroom chalk

  • 7 Pigments (dry, natural, colored materials) are mixed in with the calcium carbonate while both are dry (the procedure is similar to sifting flour and baking powder together before adding liquid, as in a cake recipe). Water is then added to the mixture, which is then baked in the same manner as white classroom chalk.

Making pastels

  • 8 Another manufacturing method is used for pastels, the chalks used for art drawing. The procedure resembles that used for colored classroom chalk, but calcium sulfate is used instead of calcium carbonate. In addition, the dry material is mixed with clay and oils, and more pigments are added to produce a slurry that has the consistency of toothpaste. Because the final products must be relatively moist, pastels are usually air-dried rather than baked.

Boxing the chalk

  • 9 Placed in small boxes, the completed chalk sticks are stacked in large boxes to be shipped to supply stores.



>>How to Make Paper Plates to Watch Video In Telugu Click Here

>>For CHACK PIECE MAKING MACHINE DETAILS & PRICE CLICK HERE


WATCH VIDEO HOW TO MAKE CHACK IN TELUGU

About the author

Mallikarjuna

Leave a Comment

error: Content is protected !!